Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 989
Filtrar
2.
Neurosurg Rev ; 47(1): 193, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662220

RESUMO

This critique examines a 12-year retrospective study on serum magnesium concentration-guided administration of magnesium sulfate in 548 patients with aneurysmal subarachnoid hemorrhage (aSAH). The study reported that maintaining serum magnesium levels between 2 and 2.5 mmol/L reduced rates of delayed cerebral infarction and improved clinical outcomes. However, limitations due to its retrospective nature, single-center design, and unequal treatment group sizes may affect generalizability. Future multicentric randomized controlled trials are recommended to validate these findings and refine magnesium dosing strategies for aSAH treatment.


Assuntos
Sulfato de Magnésio , Fármacos Neuroprotetores , Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/complicações , Sulfato de Magnésio/administração & dosagem , Estudos Retrospectivos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Resultado do Tratamento , Feminino , Administração Intravenosa , Pessoa de Meia-Idade , Masculino , Neuroproteção/efeitos dos fármacos , Infarto Cerebral/prevenção & controle , Infarto Cerebral/tratamento farmacológico , Adulto
3.
Phytomedicine ; 119: 155015, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37597362

RESUMO

BACKGROUND: Depression is a severe mental illness that endangers human health. Depressed individuals are prone to sleep less and to the loss of appetite for food; their thinking and cognition processes, as well as mood, may even be affected. Danzhi Xiaoyao San (DXS), documented in the Internal Medicine Summary, has been used for hundreds of years in China and is widely applied traditionally to treat liver qi stagnation, liver and spleen blood deficiency, menstrual disorders, and spontaneous and night sweating. DXS can also clear heat and drain the liver. Presently, it is used frequently in the treatment of depression based on its ability to clear the liver and alleviate depression. PURPOSE: To summarize clinical and preclinical studies on the antidepressant-like effects of DXS, understand the material basis and mechanisms of these effects, and offer new suggestions and methods for the clinical treatment of depression. METHODS: "Danzhi Xiaoyao", "Danzhixiaoyao", "Xiaoyao", "depression" and active ingredients were entered as keywords in PubMed, Google Scholar, CNKI and WANFANG DATA databases in the search for material on DXS and its active ingredients. The PRISMA guidelines were followed in this review process. RESULTS: Per clinical reports, DXS has a therapeutic effect on patients with depression but few side effects. DXS and its active ingredients allegedly produce their neuroprotective antidepressant-like effects by modulating monoamine neurotransmitter levels, inhibiting the hypothalamic-pituitary-adrenal (HPA) axis hyperfunction, reducing neuroinflammation and increasing neurotrophic factors. CONCLUSION: Overall, DXS influences multiple potential mechanisms to exert its antidepressant-like effects thanks to its multicomponent character. Because depression is not caused by a single mechanism, probing the antidepressant-like effects of DXS could further help understand the pathogenesis of depression and discover new antidepressant drugs.


Assuntos
Antidepressivos , Medicina Tradicional Chinesa , Antidepressivos/química , Antidepressivos/farmacologia , Humanos , Animais , Neurotransmissores/química , Neurotransmissores/farmacologia , Neuroproteção/efeitos dos fármacos , Metabolômica
5.
Adv Neurobiol ; 32: 271-313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37480464

RESUMO

Environmental temperature adversely affects the outcome of concussive head injury (CHI)-induced brain pathology. Studies from our laboratory showed that animals reared at either cold environment or at hot environment exacerbate brain pathology following CHI. Our previous experiments showed that nanowired delivery of oxiracetam significantly attenuated CHI-induced brain pathology and associated neurovascular changes. Military personnel are the most susceptible to CHI caused by explosion, blasts, missile or blunt head trauma leading to lifetime functional and cognitive impairments affecting the quality of life. Severe CHI leads to instant death and/or lifetime paralysis. Military personnel engaged in combat operations are often subjected to extreme high or low environmental temperature zones across the globe. Thus, further exploration of novel therapeutic agents at cold or hot ambient temperatures following CHI are the need of the hour. CHI is also a major risk factor for developing Alzheimer's disease by enhancing amyloid beta peptide deposits in the brain. In this review, effect of hot environment on CHI-induced brain pathology is discussed. In addition, whether nanodelivery of oxiracetam together with neprilysin and monoclonal antibodies (mAb) to amyloid beta peptide and p-tau could lead to superior neuroprotection in CHI is explored. Our results show that co-administration of oxiracetam with neprilysin and mAb to AßP and p-tau significantly induced superior neuroprotection following CHI in hot environment, not reported earlier.


Assuntos
Anticorpos Monoclonais , Lesões Encefálicas Traumáticas , Neprilisina , Pirrolidinas , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Animais , Temperatura Alta , Pirrolidinas/administração & dosagem , Humanos , Nanofios/química , Encéfalo/patologia , Neprilisina/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Neuroproteção/efeitos dos fármacos
6.
Int J Biol Macromol ; 234: 123669, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796555

RESUMO

Ulvans are water-soluble sulfated polysaccharides predominantly found in the cell wall of green algae. They hold unique characteristics that are attributed to their 3D conformation, functional groups along with the presence of saccharides and sulfate ions. Traditionally, ulvans are widely used as food supplements and probiotics owing to the high content of carbohydrates. Despite their widespread usage in food industry, an in-depth understanding is required for extrapolating their potential application as a nutraceutical and medicinal agent which could be beneficial in promoting human health and well-being. This review emphasizes novel therapeutic avenues where ulvan polysaccharides can be used beyond their nutritional applications. A collection of literature points towards multifarious applications of ulvan in various biomedical fields. Structural aspects along with extraction and purification methods have been discussed. The underlying molecular mechanisms associated with its biomedical potential in different therapeutic fields like oncology, infectious diseases, inflammation, neuroprotection and tissue engineering, etc. have been unravelled. Challenges associated with clinical translation and future perspectives have been deliberated.


Assuntos
Produtos Biológicos , Polissacarídeos , Animais , Humanos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Clorófitas/química , Suplementos Nutricionais , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Neoplasias/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Infecções/tratamento farmacológico , Neuroproteção/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Ciência Translacional Biomédica , Anticoagulantes/farmacologia , Engenharia Tecidual , Regeneração/efeitos dos fármacos
7.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835155

RESUMO

Neurodegenerative diseases (NDs) affect the West due to the increase in life expectancy. Nervous cells accumulate oxidative damage, which is one of the factors that triggers and accelerates neurodegeneration. However, cells have mechanisms that scavenge reactive oxygen species (ROS) and alleviate oxidative stress (OS). Many of these endogenous antioxidant systems are regulated at the gene expression level by the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2). In the presence of prooxidant conditions, Nrf2 translocates to the nucleus and induces the transcription of genes containing ARE (antioxidant response element). In recent years, there has been an increase in the study of the Nrf2 pathway and the natural products that positively regulate it to reduce oxidative damage to the nervous system, both in in vitro models with neurons and microglia subjected to stress factors and in vivo models using mainly murine models. Quercetin, curcumin, anthocyanins, tea polyphenols, and other less studied phenolic compounds such as kaempferol, hesperetin, and icariin can also modulate Nrf2 by regulating several Nrf2 upstream activators. Another group of phytochemical compounds that upregulate this pathway are terpenoids, including monoterpenes (aucubin, catapol), diterpenes (ginkgolides), triterpenes (ginsenosides), and carotenoids (astaxanthin, lycopene). This review aims to update the knowledge on the influence of secondary metabolites of health interest on the activation of the Nrf2 pathway and their potential as treatments for NDs.


Assuntos
Produtos Biológicos , Fator 2 Relacionado a NF-E2 , Neuroproteção , Animais , Camundongos , Antocianinas/metabolismo , Antioxidantes/farmacologia , Produtos Biológicos/farmacologia , Neuroproteção/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Neurol India ; 70(4): 1601-1609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36076665

RESUMO

Background: Neuroprotection in traumatic brain injury (TBI) is an unmet medical need. Objective: We evaluated two agents, aglepristone (progesterone receptor antagonist) and N-salicyloyltryptamine (STP) (activator of Maxi-K channel in GH3 cells), for neuroprotection in Feeney's weight drop model of TBI. Material and Methods: Forty-eight male Wistar rats were divided into six groups (n = 8 per group). A battery of six neurobehavioral tests was evaluated at the end of the first week (EO1W), second week (EO2W), and third week (EO3W). In addition, histopathological and immunohistochemistry (BAX, Bcl-2, and M30 Cytodeath) tests were performed at EO3W. Results: Aglepristone at 10 mg/kg showed significant neuroprotection compared to control as assessed by Rota-rod test at EO1W, VEFP right paw and 28-point neurobehavioral test at EO2W, MWM test at EO3W, and positive histopathological and IHC findings. Aglepristone at 20 mg/kg showed negative results as assessed by BAX expression, downregulation of Bcl-2, and positive M30 Cytodeath, thereby suggesting toxicity at higher doses. STP 100 mg/kg showed modest neuroprotective activity but failed to show a dose-response relationship at a dose of 50 mg/kg. Conclusion: The study shows that progesterone receptor antagonists have neuroprotection at lower doses and toxicity at higher doses.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Canais de Potássio Ativados por Cálcio de Condutância Alta , Fármacos Neuroprotetores , Receptores de Progesterona , Animais , Lesões Encefálicas/patologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Proteínas de Transporte , Modelos Animais de Doenças , Canais de Potássio Ativados por Cálcio de Condutância Alta/agonistas , Masculino , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Progesterona/antagonistas & inibidores , Proteína X Associada a bcl-2/metabolismo
9.
Cells ; 11(15)2022 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-35892581

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder, and no effective treatments are available to treat this disorder. Therefore, researchers have been investigating Hericium erinaceus, or the monkey head mushroom, an edible medicinal mushroom, as a possible treatment for AD. In this narrative review, we evaluated six preclinical and three clinical studies of the therapeutic effects of Hericium erinaceus on AD. Preclinical trials have successfully demonstrated that extracts and bioactive compounds of Hericium erinaceus have potential beneficial effects in ameliorating cognitive functioning and behavioral deficits in animal models of AD. A limited number of clinical studies have been conducted and several clinical trials are ongoing, which have thus far shown analogous outcomes to the preclinical studies. Nonetheless, future research on Hericium erinaceus needs to focus on elucidating the specific neuroprotective mechanisms and the target sites in AD. Additionally, standardized treatment parameters and universal regulatory systems need to be established to further ensure treatment safety and efficacy. In conclusion, Hericium erinaceus has therapeutic potential and may facilitate memory enhancement in patients with AD.


Assuntos
Doença de Alzheimer , Hericium , Memória , Doença de Alzheimer/tratamento farmacológico , Animais , Extratos Celulares/farmacologia , Extratos Celulares/uso terapêutico , Modelos Animais de Doenças , Hericium/química , Humanos , Memória/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos
10.
Mar Drugs ; 20(3)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35323490

RESUMO

Oxidative stress has been implicated in the etiology of Parkinson's disease (PD). Molecules non-covalently binding to the Keap1-Nrf2 complex could be a promising therapeutic approach for PD. Herein, two novel prenylated indole alkaloids asperpenazine (1), and asperpendoline (2) with a scarce skeleton of pyrimido[1,6-a]indole were discovered from the co-cultivated fungi of Aspergillus ochraceus MCCC 3A00521 and Penicillium sp. HUBU 0120. Compound 2 exhibited potential neuroprotective activity on SH-SY5Y cells against oxidative stress. Molecular mechanism research demonstrated that 2 inhibited Keap1 expression, resulting in the translocation of Nrf2 from the cytoplasm to the nucleus, activating the downstream genes expression of HO-1 and NQO1, leading to the reduction in reactive oxygen species (ROS) and the augment of glutathione. Molecular docking and dynamic simulation analyses manifested that 2 interacted with Keap1 (PDB ID: 1X2R) via forming typical hydrogen and hydrophobic bonds with residues and presented less fluctuation of RMSD and RMSF during a natural physiological condition.


Assuntos
Alcaloides Indólicos/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Aspergillus ochraceus/química , Aspergillus ochraceus/metabolismo , Linhagem Celular Tumoral , Glutationa/metabolismo , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Penicillium/química , Penicillium/metabolismo , Prenilação
11.
Acta Pharmacol Sin ; 43(10): 2527-2541, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35347247

RESUMO

Oxidative stress is extensively involved in neurodegeneration. Clinical evidence shows that keeping the mind active through mentally-stimulating physical activities can effectively slow down the progression of neurodegeneration. With increased physical activities, more neurotransmitters would be released in the brain. In the present study, we investigated whether some of the released neurotransmitters might have a beneficial effect against oxidative neurodegeneration in vitro. Glutamate-induced, glutathione depletion-associated oxidative cytotoxicity in HT22 mouse hippocampal neuronal cells was used as an experimental model. We showed that norepinephrine (NE, 50 µM) or dopamine (DA, 50 µM) exerted potent protective effect against glutamate-induced cytotoxicity, but this effect was not observed when other neurotransmitters such as histamine, γ-aminobutyric acid, serotonin, glycine and acetylcholine were tested. In glutamate-treated HT22 cells, both NE and DA significantly suppressed glutathione depletion-associated mitochondrial dysfunction including mitochondrial superoxide accumulation, ATP depletion and mitochondrial AIF release. Moreover, both NE and DA inhibited glutathione depletion-associated MAPKs activation, p53 phosphorylation and GADD45α activation. Molecular docking analysis revealed that NE and DA could bind to protein disulfide isomerase (PDI). In biochemical enzymatic assay in vitro, NE and DA dose-dependently inhibited the reductive activity of PDI. We further revealed that the protective effect of NE and DA against glutamate-induced oxidative cytotoxicity was mediated through inhibition of PDI-catalyzed dimerization of the neuronal nitric oxide synthase. Collectively, the results of this study suggest that NE and DA may have a protective effect against oxidative neurodegeneration through inhibition of protein disulfide isomerase and the subsequent activation of the MAPKs‒p53‒GADD45α oxidative cascade.


Assuntos
Morte Celular , Dopamina , Neuroproteção , Norepinefrina , Isomerases de Dissulfetos de Proteínas , Acetilcolina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Dopamina/farmacologia , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Glicina/farmacologia , Histamina/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Neuroproteção/efeitos dos fármacos , Neurotransmissores , Óxido Nítrico Sintase Tipo I/metabolismo , Norepinefrina/farmacologia , Estresse Oxidativo , Isomerases de Dissulfetos de Proteínas/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Superóxidos/metabolismo , Superóxidos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Ácido gama-Aminobutírico/metabolismo
12.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216504

RESUMO

Spinal cord injury (SCI) causes significant mortality and morbidity. Currently, no FDA-approved pharmacotherapy is available for treating SCI. Previously, low doses of estrogen (17ß-estradiol, E2) were shown to improve the post-injury outcome in a rat SCI model. However, the range of associated side effects makes advocating its therapeutic use difficult. Therefore, this study aimed at investigating the therapeutic efficacy of Premarin (PRM) in SCI. PRM is an FDA-approved E2 (10%) formulation, which is used for hormone replacement therapy with minimal risk of serious side effects. The effects of PRM on SCI were examined by magnetic resonance imaging, immunofluorescent staining, and western blot analysis in a rat model. SCI animals treated with vehicle alone, PRM, E2 receptor antagonist (ICI), or PRM + ICI were graded in a blinded way for locomotor function by using the Basso-Beattie-Bresnahan (BBB) locomotor scale. PRM treatment for 7 days decreased post-SCI lesion volume and attenuated neuronal cell death, inflammation, and axonal damage. PRM also altered the balance of pro- and anti-apoptotic proteins in favor of cell survival and improved angiogenesis and microvascular growth. Increased expression of estrogen receptors (ERs) ERα and ERß following PRM treatment and their inhibition by ER inhibitor indicated that the neuroprotection associated with PRM treatment might be E2-receptor mediated. The attenuation of glial activation with decreased inflammation and cell death, and increased angiogenesis by PRM led to improved functional outcome as determined by the BBB locomotor scale. These results suggest that PRM treatment has significant therapeutic implications for the improvement of post-SCI outcome.


Assuntos
Estrogênios Conjugados (USP)/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Modelos Animais de Doenças , Estradiol/metabolismo , Estrogênios/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Doenças Neurodegenerativas/metabolismo , Neuroproteção/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo
13.
Brain Res ; 1778: 147768, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968440

RESUMO

Lysosomal dysfunction is an essential pathogenesis of autophagic neuronal injury after ischemic stroke. As a result of cerebral ischemia, transcription factor EB (TFEB) is greatly phosphorylated by prominently activated glycogen synthase kinase-3ß (GSK-3ß). This increased TFEB phosphorylation decreases its nuclear translocation and subsequently leads to reduced lysosomal biosynthesis, which ultimately results in lysosomal dysfunction. The present study is to investigate whether the lysosomal dysfunction in neurons can be restored to alleviate post-stroke damage by GSK-3ß inhibition. The GSK-3ß activity was inhibited by pre-treatment with CHIR-99021 (CHIR) for 3 days before middle cerebral artery occlusion (MCAO) surgery in rats. Besides, the lysosomal capacity was altered by pre-administration with Bafilomycin A1 (Baf-A1) and EN6, respectively. Twenty-four hours after MCAO/reperfusion, the penumbral tissues were obtained to detect the GSK-3ß, cytoplasmic and nuclear TFEB, and proteins in autophagic/lysosomal pathway by western blot and immunofluorescence, respectively. Meanwhile, the infarct volume, neurological deficits and neuron survival were assessed to evaluate the neurological outcomes elicited by GSK-3ß inhibition. The results demonstrated that the neurological injury could be significantly mitigated by GSK-3ß inhibition in MCAO + CHIR group, compared with that in MCAO group. Moreover, CHIR-facilitated TFEB nuclear translocation in neurons was coupled with reinforced lysosomal activities and attenuated autophagic substrates. However, GSK-3ß inhibition-induced neuroprotection was greatly counteracted by Baf-A1-weakened lysosomal capacity. Conversely, EN6-reinforced lysosomal activities further ameliorated the autophagic/lysosomal signaling, and synergistically alleviated the neurological damage upon GSK-3ß inhibition after MCAO/reperfusion. Our data suggests that GSK-3ß inhibition-augmented neuroprotection against ischemic stroke is elicited by restoring the lysosomal dysfunction in neurons.


Assuntos
Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , AVC Isquêmico/tratamento farmacológico , Lisossomos , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Modelos Animais de Doenças , Masculino , Piridinas/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley
14.
Adv Sci (Weinh) ; 9(4): e2103265, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34904402

RESUMO

Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia-induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate-dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Cálcio/metabolismo , Glicolatos/farmacologia , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Isquemia Encefálica/metabolismo , Dessecação , Modelos Animais de Doenças , Glicolatos/administração & dosagem , Glicolatos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/metabolismo , Traumatismo por Reperfusão/metabolismo , Suínos
15.
Mol Neurobiol ; 59(1): 574-589, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34735672

RESUMO

Phosphodiesterase 10A (PDE10A) hydrolyzes adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP). It is highly expressed in the striatum. Recent evidence implied that PDE10A may be involved in the inflammatory processes following injury, such as ischemic stroke. Its role in ischemic injury was unknown. Herein, we exposed mice to 90 or 30-min middle cerebral artery occlusion, followed by the delivery of the highly selective PDE10A inhibitor TAK-063 (0.3 mg/kg or 3 mg/kg) immediately after reperfusion. Animals were sacrificed after 24 or 72 h, respectively. Both TAK-063 doses enhanced neurological function, reduced infarct volume, increased neuronal survival, reduced brain edema, and increased blood-brain barrier integrity, alongside cerebral microcirculation improvements. Post-ischemic neuroprotection was associated with increased phosphorylation (i.e., activation) of pro-survival Akt, Erk-1/2, GSK-3α/ß and anti-apoptotic Bcl-xL abundance, decreased phosphorylation of pro-survival mTOR, and HIF-1α, MMP-9 and pro-apoptotic Bax abundance. Interestingly, PDE10A inhibition reduced inflammatory cytokines/chemokines, including IFN-γ and TNF-α, analyzed by planar surface immunoassay. In addition, liquid chromatography-tandem mass spectrometry revealed 40 proteins were significantly altered by TAK-063. Our study established PDE10A as a target for ischemic stroke therapy.


Assuntos
Edema Encefálico/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , AVC Isquêmico/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Inibidores de Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases/metabolismo , Animais , Edema Encefálico/metabolismo , Modelos Animais de Doenças , AVC Isquêmico/metabolismo , Camundongos , Microcirculação/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Piridazinas/farmacologia , Piridazinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
16.
Neurochem Int ; 152: 105244, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826530

RESUMO

Excitotoxicity refers to the ability of excessive extracellular excitatory amino acids to damage neurons via receptor activation. It is a crucial pathogenetic process in neurodegenerative diseases. TP53 is confirmed to be involved in excitotoxicity. It is demonstrated that TP53 induced glycolysis and apoptotic regulator (TIGAR)-regulated metabolic pathway can protect against neuronal injury. However, the role of TIGAR in excitotoxicity and specific mechanisms is still unknown. In this study, an in vivo excitotoxicity model was constructed via stereotypical kainic acid (KA) injection into the striatum of mice. KA reduced TIGAR expression levels, neuroinflammatory responses and mitochondrial dysfunction. TIGAR overexpression could reverse KA-induced neuronal injury by reducing neuroinflammation and improving mitochondrial function, thereby exerting neuroprotective effects. Therefore, this study could provide a potential therapeutic target for neurodegenerative diseases.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Mitocôndrias/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Neuroproteção/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Ácido Caínico/farmacologia , Camundongos Transgênicos , Mitocôndrias/metabolismo , Doenças Neuroinflamatórias/induzido quimicamente , Fármacos Neuroprotetores/farmacologia
17.
Ann N Y Acad Sci ; 1507(1): 49-59, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34060087

RESUMO

Cardiac arrest has many implications for morbidity and mortality. Few interventions have been shown to improve return of spontaneous circulation (ROSC) and long-term outcomes after cardiac arrest. Ischemic-reperfusion injury upon achieving ROSC creates an imbalance between oxygen supply and demand. Multiple events occur in the postcardiac arrest period, including excitotoxicity, mitochondrial dysfunction, and oxidative stress and inflammation, all of which contribute to ongoing brain injury and cellular death. Given that complex pathophysiology underlies global brain hypoxic ischemia, neuroprotective strategies targeting multiple stages of the neuropathologic cascade should be considered as a means of mitigating secondary neuronal injury and improving neurologic outcomes and survival in cardiac arrest victims. In this review article, we discuss a number of different pharmacologic agents that may have a potential role in targeting these injurious pathways following cardiac arrest. Pharmacologic therapies most relevant for discussion currently include memantine, perampanel, magnesium, propofol, thiamine, methylene blue, vitamin C, vitamin E, coenzyme Q10 , minocycline, steroids, and aspirin.


Assuntos
Lesões Encefálicas/prevenção & controle , Isquemia Encefálica/prevenção & controle , Parada Cardíaca/tratamento farmacológico , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Parada Cardíaca/complicações , Parada Cardíaca/metabolismo , Humanos , Memantina/administração & dosagem , Neuroproteção/fisiologia , Nitrilas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Piridonas/administração & dosagem , Tiamina/administração & dosagem
18.
Braz. J. Pharm. Sci. (Online) ; 58: e21530, 2022. graf
Artigo em Inglês | LILACS | ID: biblio-1420486

RESUMO

Abstract Therapeutically, piracetam has been used for decades as a cognitive enhancer for memory- related neuronal disorders. The present study aimed to investigate the neuroprotective potential of piracetam on lipopolysaccharides (LPS)-induced neuronal deficit using both in-vitro and in-vivo experimental models. For the in-vitro analysis, EOC-20 murine microglial cells were induced with a neuronal toxicity of 100 µg/ml of LPS, and the formation of intracellular reactive oxygen species (ROS) and nitric oxide (NO) productions were determined. For in-vivo neuroprotective analysis, groups of mice were treated orally with two doses of piracetam (200 and 400 mg/kg) for 30 days. Neuronal toxicity was induced by four intraperitoneal injections of LPS (250 µg/kg/day). The malondialdehyde (MDA) level was measured for oxidative stress, and catalase reduced glutathione (GSH), glutathione reductase (GRD), and superoxide dismutase (SOD) levels were determined as the antioxidant parameters. The result of the cell viability study was that pre-treatment with piracetam significantly protected the LPS-induced cell loss, and attenuated the ROS generation and NO production in LPS-induced EOC-20 cells. Moreover, the treatment of piracetam significantly reduced the MDA levels and improved catalase, GSH, GRD, and SOD activities in LPS-induced mice brains. The overall results from this study supported the neuroprotective effects of piracetam against LPS-induced neuronal toxicity.


Assuntos
Animais , Masculino , Camundongos , Piracetam/análise , Lipopolissacarídeos/farmacologia , Neuroproteção/efeitos dos fármacos , Estresse Oxidativo , Cérebro/anormalidades , Doenças Neuroinflamatórias/induzido quimicamente , Antioxidantes/efeitos adversos
19.
Molecules ; 26(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34946536

RESUMO

Antibiotics as antibacterial drugs have saved many lives, but have also become a victim of their own success. Their widespread abuse reduces their anti-infective effectiveness and causes the development of bacterial resistance. Moreover, irrational antibiotic therapy contributes to gastrointestinal dysbiosis, that increases the risk of the development of many diseases, including neurological and psychiatric. One of the potential options for restoring homeostasis is the use of oral antibiotics that are poorly absorbed from the gastrointestinal tract (e.g., rifaximin alfa). Thus, antibiotic therapy may exert neurological or psychiatric adverse drug reactions which are often considered to be overlooked and undervalued issues. Drug-induced neurotoxicity is mostly observed after beta-lactams and quinolones. Penicillin may produce a wide range of neurological dysfunctions, including encephalopathy, behavioral changes, myoclonus or seizures. Their pathomechanism results from the disturbances of gamma-aminobutyric acid-GABA transmission (due to the molecular similarities between the structure of the ß-lactam ring and GABA molecule) and impairment of the functioning of benzodiazepine receptors (BZD). However, on the other hand, antibiotics have also been studied for their neuroprotective properties in the treatment of neurodegenerative and neuroinflammatory processes (e.g., Alzheimer's or Parkinson's diseases). Antibiotics may, therefore, become promising elements of multi-targeted therapy for these entities.


Assuntos
Sistema Nervoso , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Síndromes Neurotóxicas , Animais , Antibacterianos/efeitos adversos , Antibacterianos/uso terapêutico , Humanos , Sistema Nervoso/metabolismo , Sistema Nervoso/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia
20.
Curr Drug Metab ; 22(12): 978-988, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34749619

RESUMO

BACKGROUND: In over 300 million clinical cases, antidepressant drugs seem to provide only symptomatic relief and limited protection in life-threatening depressive events. OBJECTIVES: To compare neuronal-signaling mechanism and neuroprotective roles of Thymoquinone (TQ) suspension and its SLN (TQSLN) against standard antidepressant drug fluoxetine. METHODS: This research investigated in-silico docking at NF-KB p50 active site, CLSM based gut permeation, screening of antidepressant activities and neurosignaling pathways involved. RESULTS: As compared to fluoxetine, TQ reporteda significantly better docking score (-6.83 v/s -6.22) and a better lower free binding energy of (-34.715 Kcal/mol v/s -28.537 Kcal/mol). While poorly oral bioavailable and P-gp substrate TQ reported approximately 250% higher gut permeation if delivered as TQSLN formulation. In locomotor studies, as compared to TQS, TQSLN favored more prominent (p< 0.010) elevation in average time, horizontalactivity, average-velocity, and total-movement with reduced rest time LPS treated groups. However, in the tail suspension test, TQSLN significantly reduced immobility time (p<0.010). Similarly, In the modified force swimming test, TQSLN also significantly reduced immobility time (p<0.010), but swimming time (p<0.010) and climbing time (p<0.050) were significantly elevated. Subsequently, TQSLN reported significantly elevated neuroprotective BDNF (p<0.010) as well as hippocampal 5HT/TRP; accompanied with reduced levels of hippocampal inflammatory markers TNF-α (p<0.001) and IL-6 (p<0.010) as well as lower kynurenine and tryptophan ratio (KYN/TRP). Similarly, the hippocampal CA1 region further revealed TQSL more predominantly attenuated NF-kB nuclear translocation in the brain. CONCLUSION: Despite the poor bioavailability of TQ, TQSLN potentially attenuates neuroinflammatory transmitters and favors BDNF to modulate depressive neurobehavioral states.


Assuntos
Comportamento Animal/efeitos dos fármacos , Benzoquinonas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Lipossomos/farmacologia , NF-kappa B/metabolismo , Neuroproteção/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Disponibilidade Biológica , Depressão/tratamento farmacológico , Depressão/metabolismo , Sistemas de Liberação de Medicamentos , Simulação de Acoplamento Molecular , Nanopartículas , Neuroimunomodulação/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Preparações de Plantas/farmacologia , Ratos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...